metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.45D20, C24.49D10, C10.74(C4×D4), (C2×Dic5)⋊17D4, C23.26(C4×D5), C10.32C22≀C2, (C23×Dic5)⋊1C2, (C22×C4).33D10, C22.103(D4×D5), (C22×C10).68D4, C22.44(C2×D20), C2.5(C22⋊D20), C10.86(C4⋊D4), C23.36(C5⋊D4), C5⋊4(C23.23D4), C22⋊1(D10⋊C4), C2.4(Dic5⋊D4), (C22×C20).26C22, (C23×C10).41C22, (C23×D5).14C22, C23.285(C22×D5), C10.10C42⋊16C2, C2.29(Dic5⋊4D4), C22.50(D4⋊2D5), (C22×C10).332C23, C2.5(C22.D20), C10.33(C22.D4), (C22×Dic5).209C22, (C2×C5⋊D4)⋊11C4, (C2×C22⋊C4)⋊5D5, (C10×C22⋊C4)⋊3C2, (C2×Dic5)⋊8(C2×C4), (C22×D5)⋊6(C2×C4), (C2×D10⋊C4)⋊6C2, C22.129(C2×C4×D5), (C2×C10)⋊5(C22⋊C4), (C2×C10).324(C2×D4), C10.78(C2×C22⋊C4), (C22×C5⋊D4).4C2, C22.53(C2×C5⋊D4), C2.10(C2×D10⋊C4), (C2×C10).147(C4○D4), (C2×C10).212(C22×C4), (C22×C10).123(C2×C4), SmallGroup(320,585)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.45D20
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e10=b, f2=cb=bc, ab=ba, ac=ca, eae-1=ad=da, af=fa, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce9 >
Subgroups: 1118 in 286 conjugacy classes, 83 normal (25 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, D4, C23, C23, C23, D5, C10, C10, C10, C22⋊C4, C22×C4, C22×C4, C2×D4, C24, C24, Dic5, C20, D10, C2×C10, C2×C10, C2×C10, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C23×C4, C22×D4, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C22×D5, C22×D5, C22×C10, C22×C10, C22×C10, C23.23D4, D10⋊C4, C5×C22⋊C4, C22×Dic5, C22×Dic5, C22×Dic5, C2×C5⋊D4, C2×C5⋊D4, C22×C20, C23×D5, C23×C10, C10.10C42, C2×D10⋊C4, C10×C22⋊C4, C23×Dic5, C22×C5⋊D4, C23.45D20
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, C4○D4, D10, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22.D4, C4×D5, D20, C5⋊D4, C22×D5, C23.23D4, D10⋊C4, C2×C4×D5, C2×D20, D4×D5, D4⋊2D5, C2×C5⋊D4, Dic5⋊4D4, C22⋊D20, C22.D20, C2×D10⋊C4, Dic5⋊D4, C23.45D20
(1 57)(2 78)(3 59)(4 80)(5 41)(6 62)(7 43)(8 64)(9 45)(10 66)(11 47)(12 68)(13 49)(14 70)(15 51)(16 72)(17 53)(18 74)(19 55)(20 76)(21 77)(22 58)(23 79)(24 60)(25 61)(26 42)(27 63)(28 44)(29 65)(30 46)(31 67)(32 48)(33 69)(34 50)(35 71)(36 52)(37 73)(38 54)(39 75)(40 56)(81 139)(82 154)(83 121)(84 156)(85 123)(86 158)(87 125)(88 160)(89 127)(90 142)(91 129)(92 144)(93 131)(94 146)(95 133)(96 148)(97 135)(98 150)(99 137)(100 152)(101 124)(102 159)(103 126)(104 141)(105 128)(106 143)(107 130)(108 145)(109 132)(110 147)(111 134)(112 149)(113 136)(114 151)(115 138)(116 153)(117 140)(118 155)(119 122)(120 157)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 111)(2 112)(3 113)(4 114)(5 115)(6 116)(7 117)(8 118)(9 119)(10 120)(11 101)(12 102)(13 103)(14 104)(15 105)(16 106)(17 107)(18 108)(19 109)(20 110)(21 96)(22 97)(23 98)(24 99)(25 100)(26 81)(27 82)(28 83)(29 84)(30 85)(31 86)(32 87)(33 88)(34 89)(35 90)(36 91)(37 92)(38 93)(39 94)(40 95)(41 138)(42 139)(43 140)(44 121)(45 122)(46 123)(47 124)(48 125)(49 126)(50 127)(51 128)(52 129)(53 130)(54 131)(55 132)(56 133)(57 134)(58 135)(59 136)(60 137)(61 152)(62 153)(63 154)(64 155)(65 156)(66 157)(67 158)(68 159)(69 160)(70 141)(71 142)(72 143)(73 144)(74 145)(75 146)(76 147)(77 148)(78 149)(79 150)(80 151)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)(81 116)(82 117)(83 118)(84 119)(85 120)(86 101)(87 102)(88 103)(89 104)(90 105)(91 106)(92 107)(93 108)(94 109)(95 110)(96 111)(97 112)(98 113)(99 114)(100 115)(121 155)(122 156)(123 157)(124 158)(125 159)(126 160)(127 141)(128 142)(129 143)(130 144)(131 145)(132 146)(133 147)(134 148)(135 149)(136 150)(137 151)(138 152)(139 153)(140 154)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 101 110)(2 109 102 9)(3 8 103 108)(4 107 104 7)(5 6 105 106)(11 20 111 120)(12 119 112 19)(13 18 113 118)(14 117 114 17)(15 16 115 116)(21 30 86 95)(22 94 87 29)(23 28 88 93)(24 92 89 27)(25 26 90 91)(31 40 96 85)(32 84 97 39)(33 38 98 83)(34 82 99 37)(35 36 100 81)(41 62 128 143)(42 142 129 61)(43 80 130 141)(44 160 131 79)(45 78 132 159)(46 158 133 77)(47 76 134 157)(48 156 135 75)(49 74 136 155)(50 154 137 73)(51 72 138 153)(52 152 139 71)(53 70 140 151)(54 150 121 69)(55 68 122 149)(56 148 123 67)(57 66 124 147)(58 146 125 65)(59 64 126 145)(60 144 127 63)
G:=sub<Sym(160)| (1,57)(2,78)(3,59)(4,80)(5,41)(6,62)(7,43)(8,64)(9,45)(10,66)(11,47)(12,68)(13,49)(14,70)(15,51)(16,72)(17,53)(18,74)(19,55)(20,76)(21,77)(22,58)(23,79)(24,60)(25,61)(26,42)(27,63)(28,44)(29,65)(30,46)(31,67)(32,48)(33,69)(34,50)(35,71)(36,52)(37,73)(38,54)(39,75)(40,56)(81,139)(82,154)(83,121)(84,156)(85,123)(86,158)(87,125)(88,160)(89,127)(90,142)(91,129)(92,144)(93,131)(94,146)(95,133)(96,148)(97,135)(98,150)(99,137)(100,152)(101,124)(102,159)(103,126)(104,141)(105,128)(106,143)(107,130)(108,145)(109,132)(110,147)(111,134)(112,149)(113,136)(114,151)(115,138)(116,153)(117,140)(118,155)(119,122)(120,157), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,111)(2,112)(3,113)(4,114)(5,115)(6,116)(7,117)(8,118)(9,119)(10,120)(11,101)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,109)(20,110)(21,96)(22,97)(23,98)(24,99)(25,100)(26,81)(27,82)(28,83)(29,84)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,138)(42,139)(43,140)(44,121)(45,122)(46,123)(47,124)(48,125)(49,126)(50,127)(51,128)(52,129)(53,130)(54,131)(55,132)(56,133)(57,134)(58,135)(59,136)(60,137)(61,152)(62,153)(63,154)(64,155)(65,156)(66,157)(67,158)(68,159)(69,160)(70,141)(71,142)(72,143)(73,144)(74,145)(75,146)(76,147)(77,148)(78,149)(79,150)(80,151), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,116)(82,117)(83,118)(84,119)(85,120)(86,101)(87,102)(88,103)(89,104)(90,105)(91,106)(92,107)(93,108)(94,109)(95,110)(96,111)(97,112)(98,113)(99,114)(100,115)(121,155)(122,156)(123,157)(124,158)(125,159)(126,160)(127,141)(128,142)(129,143)(130,144)(131,145)(132,146)(133,147)(134,148)(135,149)(136,150)(137,151)(138,152)(139,153)(140,154), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,101,110)(2,109,102,9)(3,8,103,108)(4,107,104,7)(5,6,105,106)(11,20,111,120)(12,119,112,19)(13,18,113,118)(14,117,114,17)(15,16,115,116)(21,30,86,95)(22,94,87,29)(23,28,88,93)(24,92,89,27)(25,26,90,91)(31,40,96,85)(32,84,97,39)(33,38,98,83)(34,82,99,37)(35,36,100,81)(41,62,128,143)(42,142,129,61)(43,80,130,141)(44,160,131,79)(45,78,132,159)(46,158,133,77)(47,76,134,157)(48,156,135,75)(49,74,136,155)(50,154,137,73)(51,72,138,153)(52,152,139,71)(53,70,140,151)(54,150,121,69)(55,68,122,149)(56,148,123,67)(57,66,124,147)(58,146,125,65)(59,64,126,145)(60,144,127,63)>;
G:=Group( (1,57)(2,78)(3,59)(4,80)(5,41)(6,62)(7,43)(8,64)(9,45)(10,66)(11,47)(12,68)(13,49)(14,70)(15,51)(16,72)(17,53)(18,74)(19,55)(20,76)(21,77)(22,58)(23,79)(24,60)(25,61)(26,42)(27,63)(28,44)(29,65)(30,46)(31,67)(32,48)(33,69)(34,50)(35,71)(36,52)(37,73)(38,54)(39,75)(40,56)(81,139)(82,154)(83,121)(84,156)(85,123)(86,158)(87,125)(88,160)(89,127)(90,142)(91,129)(92,144)(93,131)(94,146)(95,133)(96,148)(97,135)(98,150)(99,137)(100,152)(101,124)(102,159)(103,126)(104,141)(105,128)(106,143)(107,130)(108,145)(109,132)(110,147)(111,134)(112,149)(113,136)(114,151)(115,138)(116,153)(117,140)(118,155)(119,122)(120,157), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,111)(2,112)(3,113)(4,114)(5,115)(6,116)(7,117)(8,118)(9,119)(10,120)(11,101)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,109)(20,110)(21,96)(22,97)(23,98)(24,99)(25,100)(26,81)(27,82)(28,83)(29,84)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,138)(42,139)(43,140)(44,121)(45,122)(46,123)(47,124)(48,125)(49,126)(50,127)(51,128)(52,129)(53,130)(54,131)(55,132)(56,133)(57,134)(58,135)(59,136)(60,137)(61,152)(62,153)(63,154)(64,155)(65,156)(66,157)(67,158)(68,159)(69,160)(70,141)(71,142)(72,143)(73,144)(74,145)(75,146)(76,147)(77,148)(78,149)(79,150)(80,151), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,116)(82,117)(83,118)(84,119)(85,120)(86,101)(87,102)(88,103)(89,104)(90,105)(91,106)(92,107)(93,108)(94,109)(95,110)(96,111)(97,112)(98,113)(99,114)(100,115)(121,155)(122,156)(123,157)(124,158)(125,159)(126,160)(127,141)(128,142)(129,143)(130,144)(131,145)(132,146)(133,147)(134,148)(135,149)(136,150)(137,151)(138,152)(139,153)(140,154), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,101,110)(2,109,102,9)(3,8,103,108)(4,107,104,7)(5,6,105,106)(11,20,111,120)(12,119,112,19)(13,18,113,118)(14,117,114,17)(15,16,115,116)(21,30,86,95)(22,94,87,29)(23,28,88,93)(24,92,89,27)(25,26,90,91)(31,40,96,85)(32,84,97,39)(33,38,98,83)(34,82,99,37)(35,36,100,81)(41,62,128,143)(42,142,129,61)(43,80,130,141)(44,160,131,79)(45,78,132,159)(46,158,133,77)(47,76,134,157)(48,156,135,75)(49,74,136,155)(50,154,137,73)(51,72,138,153)(52,152,139,71)(53,70,140,151)(54,150,121,69)(55,68,122,149)(56,148,123,67)(57,66,124,147)(58,146,125,65)(59,64,126,145)(60,144,127,63) );
G=PermutationGroup([[(1,57),(2,78),(3,59),(4,80),(5,41),(6,62),(7,43),(8,64),(9,45),(10,66),(11,47),(12,68),(13,49),(14,70),(15,51),(16,72),(17,53),(18,74),(19,55),(20,76),(21,77),(22,58),(23,79),(24,60),(25,61),(26,42),(27,63),(28,44),(29,65),(30,46),(31,67),(32,48),(33,69),(34,50),(35,71),(36,52),(37,73),(38,54),(39,75),(40,56),(81,139),(82,154),(83,121),(84,156),(85,123),(86,158),(87,125),(88,160),(89,127),(90,142),(91,129),(92,144),(93,131),(94,146),(95,133),(96,148),(97,135),(98,150),(99,137),(100,152),(101,124),(102,159),(103,126),(104,141),(105,128),(106,143),(107,130),(108,145),(109,132),(110,147),(111,134),(112,149),(113,136),(114,151),(115,138),(116,153),(117,140),(118,155),(119,122),(120,157)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,111),(2,112),(3,113),(4,114),(5,115),(6,116),(7,117),(8,118),(9,119),(10,120),(11,101),(12,102),(13,103),(14,104),(15,105),(16,106),(17,107),(18,108),(19,109),(20,110),(21,96),(22,97),(23,98),(24,99),(25,100),(26,81),(27,82),(28,83),(29,84),(30,85),(31,86),(32,87),(33,88),(34,89),(35,90),(36,91),(37,92),(38,93),(39,94),(40,95),(41,138),(42,139),(43,140),(44,121),(45,122),(46,123),(47,124),(48,125),(49,126),(50,127),(51,128),(52,129),(53,130),(54,131),(55,132),(56,133),(57,134),(58,135),(59,136),(60,137),(61,152),(62,153),(63,154),(64,155),(65,156),(66,157),(67,158),(68,159),(69,160),(70,141),(71,142),(72,143),(73,144),(74,145),(75,146),(76,147),(77,148),(78,149),(79,150),(80,151)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80),(81,116),(82,117),(83,118),(84,119),(85,120),(86,101),(87,102),(88,103),(89,104),(90,105),(91,106),(92,107),(93,108),(94,109),(95,110),(96,111),(97,112),(98,113),(99,114),(100,115),(121,155),(122,156),(123,157),(124,158),(125,159),(126,160),(127,141),(128,142),(129,143),(130,144),(131,145),(132,146),(133,147),(134,148),(135,149),(136,150),(137,151),(138,152),(139,153),(140,154)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,101,110),(2,109,102,9),(3,8,103,108),(4,107,104,7),(5,6,105,106),(11,20,111,120),(12,119,112,19),(13,18,113,118),(14,117,114,17),(15,16,115,116),(21,30,86,95),(22,94,87,29),(23,28,88,93),(24,92,89,27),(25,26,90,91),(31,40,96,85),(32,84,97,39),(33,38,98,83),(34,82,99,37),(35,36,100,81),(41,62,128,143),(42,142,129,61),(43,80,130,141),(44,160,131,79),(45,78,132,159),(46,158,133,77),(47,76,134,157),(48,156,135,75),(49,74,136,155),(50,154,137,73),(51,72,138,153),(52,152,139,71),(53,70,140,151),(54,150,121,69),(55,68,122,149),(56,148,123,67),(57,66,124,147),(58,146,125,65),(59,64,126,145),(60,144,127,63)]])
68 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 4M | 4N | 5A | 5B | 10A | ··· | 10N | 10O | ··· | 10V | 20A | ··· | 20P |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 20 | 20 | 4 | 4 | 4 | 4 | 10 | ··· | 10 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
68 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | D5 | C4○D4 | D10 | D10 | C4×D5 | D20 | C5⋊D4 | D4×D5 | D4⋊2D5 |
kernel | C23.45D20 | C10.10C42 | C2×D10⋊C4 | C10×C22⋊C4 | C23×Dic5 | C22×C5⋊D4 | C2×C5⋊D4 | C2×Dic5 | C22×C10 | C2×C22⋊C4 | C2×C10 | C22×C4 | C24 | C23 | C23 | C23 | C22 | C22 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 8 | 4 | 4 | 2 | 4 | 4 | 2 | 8 | 8 | 8 | 4 | 4 |
Matrix representation of C23.45D20 ►in GL5(𝔽41)
1 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 1 | 9 |
0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
32 | 0 | 0 | 0 | 0 |
0 | 14 | 27 | 0 | 0 |
0 | 14 | 30 | 0 | 0 |
0 | 0 | 0 | 32 | 0 |
0 | 0 | 0 | 2 | 9 |
9 | 0 | 0 | 0 | 0 |
0 | 27 | 14 | 0 | 0 |
0 | 30 | 14 | 0 | 0 |
0 | 0 | 0 | 32 | 0 |
0 | 0 | 0 | 0 | 32 |
G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,9,40],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[32,0,0,0,0,0,14,14,0,0,0,27,30,0,0,0,0,0,32,2,0,0,0,0,9],[9,0,0,0,0,0,27,30,0,0,0,14,14,0,0,0,0,0,32,0,0,0,0,0,32] >;
C23.45D20 in GAP, Magma, Sage, TeX
C_2^3._{45}D_{20}
% in TeX
G:=Group("C2^3.45D20");
// GroupNames label
G:=SmallGroup(320,585);
// by ID
G=gap.SmallGroup(320,585);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,422,387,58,12550]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^10=b,f^2=c*b=b*c,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,a*f=f*a,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^9>;
// generators/relations